

A condition for separability of $\mathbf{C}(X \rightarrow \Omega)$ under the uniform topology

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

23 September, 2017 (at 16:17)

Entrance. Spaces X and Ω are metric spaces and $\mathbf{C}(X \rightarrow \Omega)$ is the space of continuous functions $X \rightarrow \Omega$ equipped with the uniform norm $\|\cdot, \cdot\|$. A subset $E \subset X$ is **δ -dense** if every point of X is within distance δ of E . Thus E is dense if it is δ -dense for all (positive numbers) δ . Recall that a metric space is **separable** if it has a *countable* dense subset. (My later notes call this property **CSD**, countably self-dense.)

1: **Theorem.** Suppose X and Ω are separable, with X compact. Then $\mathbf{C}(X \rightarrow \Omega)$ is separable. \diamond

Proof. Let $X' \subset X$ and $\Omega' \subset \Omega$ be countable dense subsets of their respective spaces. Say that a triple $(\varepsilon, \delta, \varphi)$ is **acceptable** if

- i: Both ε and δ are reciprocals of positive integers.
- ii: There is a *finite* set $F \subset X'$ which is δ -dense in X . Moreover, φ is a map from F into Ω' .

Say that an $f \in \mathbf{C}(X \rightarrow \Omega)$ is **$(\varepsilon, \delta, \varphi)$ -good** if

a: For all $x \in F$: $|\varphi(x), f(x)| < \varepsilon$.

b: For all $x, y \in X$:

$$|x, y| < \delta \implies |f(x), f(y)| < \varepsilon.$$

Notice, for all $f \in \mathbf{C}(X \rightarrow \Omega)$ and all ε , that

2: There exist δ and φ so that f is **$(\varepsilon, \delta, \varphi)$ -good**.

For since X is compact, f is uniformly continuous and so there is a sufficiently small $\delta = (1/n)$ which fulfills (b). Again by compactness there is a finite subset $F \subset X'$ which is δ -dense in X . Now define $\varphi: F \rightarrow \Omega'$ by, for each $x \in F$, simply picking a point in Ω' , call it $\varphi(x)$, which is within distance ε of $f(x)$.

The distance estimate

Now suppose we have a second $(\varphi, \varepsilon, \delta)$ -good function h . For each $y \in X$ there exists $x \in F := \text{Dom}(\varphi)$ such that $|x, y| < \delta$. Thus the conclusion of (b) holds for both f and h , to yield that

$$\begin{aligned} *: |h(y), f(y)| &\leq |h(y), h(x)| + |h(x), f(x)| \\ &\quad + |\varphi(x), f(x)| + |f(x), f(y)| \\ &\leq 4\varepsilon. \end{aligned}$$

Thus

$$\|h, f\| \leq 4\varepsilon.$$

The last step. There are but countably many acceptable triples $\tau := (\varepsilon, \delta, \varphi)$. For each such triple, pick a function h_τ which is τ -good. Then this collection $\{h_\tau\}_\tau$ is dense, courtesy of (2) and (*). \diamond

Remark. The theorem certainly fails without the hypothesis of compactness: Let $X := \mathbb{N}$ and $\Omega := \{0, 1\}$, both equipped with the discrete metric, $|n, m| := 1$ when $n \neq m$. Then the uniform norm is the discrete metric on the uncountable space $\mathbf{C}(X \rightarrow \Omega) \stackrel{\text{note}}{=} \{0, 1\}^{\mathbb{N}}$. \square

Filename: [Problems/Topology/separable^.latex](#)
As of: Sunday 06Sep2015. Typeset: 23Sep2017 at 16:17.